Hysteroscopic morcellation for treatment of uterine submucosal fibroids and endometrial polyps

HAYES, Inc

Record Status
This is a bibliographic record of a published health technology assessment. No evaluation of the quality of this assessment has been made for the HTA database.

Citation

Authors' objectives
Uterine fibroids account for nearly 40% of the approximately 600,000 hysterectomies performed each year in the United States. Endometrial polyps are also a common cause of abnormal uterine bleeding; they are found in 10% to 40% of symptomatic women, and in up to 12% of asymptomatic women. Description of Technology: Hysteroscopic intrauterine morcellation (HIUM) uses mechanical energy to resect intrauterine pathologies. The HIUM devices use a single-use disposable metal tube that is inserted through the cervix into the uterus. The tubes have cutting edges that rotate and reciprocate to cut and remove the intrauterine lesion. The resected tissue is collected via suction and contained in a plastic pouch for histopathological analysis. Patient Population: HIUM is intended for patients with submucosal fibroids, endometrial polyps, or retained products of conception. Clinical Alternatives: Currently available therapies for uterine fibroids include watchful waiting, hormone therapy, dilation and curettage, myomectomy, uterine artery embolization, hysterectomy, endometrial ablation, magnetic resonance imaging (MRI)-guided laser or cryosurgical ablation, and focused ultrasound ablation.

Final publication URL
The report may be purchased from: http://www.hayesinc.com/hayes/crd/?crd=13603

Indexing Status
Subject indexing assigned by CRD

MeSH
Humans; Female; Leiomyoma; Morcellation; Polyps; Uterine Neoplasms

Language Published
English

Country of organisation
United States

English summary
An English language summary is available.

Address for correspondence
HAYES, Inc., 157 S. Broad Street, Suite 200, Lansdale, PA 19446, USA. Tel: 215 855 0615; Fax: 215 855 5218 Email: hayesinfo@hayesinc.com

AccessionNumber
32017000071

Date abstract record published
06/01/2017