Electrotherapy modalities for adhesive capsulitis (frozen shoulder)

Authors' objectives

Background: Adhesive capsulitis (also termed frozen shoulder) is a common condition characterised by spontaneous onset of pain, progressive restriction of movement of the shoulder and disability that restricts activities of daily living, work and leisure. Electrotherapy modalities, which aim to reduce pain and improve function via an increase in energy (electrical, sound, light, thermal) into the body, are often delivered as components of a physical therapy intervention. This review is one in a series of reviews which form an update of the Cochrane review 'Physiotherapy interventions for shoulder pain'. Objectives: To synthesise the available evidence regarding the benefits and harms of electrotherapy modalities, delivered alone or in combination with other interventions, for the treatment of adhesive capsulitis.

Search methods: We searched CENTRAL, MEDLINE, EMBASE, CINAHL, plus and the ClinicalTrials.gov and World Health Organization (WHO) International Clinical Trials Registry Platform (ICTRP) clinical trials registries up to May 2014, unrestricted by language, and reviewed the reference lists of review articles and retrieved trials to identify any other potentially relevant trials.

Selection criteria: We included randomised controlled trials (RCTs) and controlled clinical trials using a quasi-randomised method of allocation that included adults with adhesive capsulitis and compared any electrotherapy modality to placebo, no treatment, a different electrotherapy modality, or any other intervention. The two main questions of the review focused on whether electrotherapy modalities are effective compared to placebo or no treatment, or if they are an effective adjunct to manual therapy or exercise (or both). The main outcomes of interest were participant-reported pain relief of 30% or greater, overall pain, function, global assessment of treatment success, active shoulder abduction, quality of life, and the number of participants experiencing any adverse event.

Data collection and analysis: Two review authors independently selected trials for inclusion, extracted the data, performed a risk of bias assessment, and assessed the quality of the body of evidence for the main outcomes using the GRADE approach.

Main results: Nineteen trials (1249 participants) were included in the review. Four trials reported using an adequate method of allocation concealment and six trials blinded participants and personnel. Only two electrotherapy modalities (low-level laser therapy (LLLT) and pulsed electromagnetic field therapy (PEMF)) have been compared to placebo. No trial has compared an electrotherapy modality plus manual therapy and exercise to manual therapy and exercise alone. The two main questions of the review were investigated in nine trials. Low quality evidence from one trial (40 participants) indicated that LLLT for six days may result in improvement at six days. Eighty per cent (16/20) of participants reported treatment success with LLLT compared with 10% (2/20) of participants receiving placebo (risk ratio (RR) 8.00, 95% confidence interval (CI) 2.11 to 30.34; absolute risk difference 70%, 95% CI 48% to 92%). No participants in either group reported adverse events. We were uncertain whether PEMF for two weeks improved pain or function more than placebo at two weeks because of the very low quality evidence from one trial (32 participants). Seventy-five per cent (15/20) of participants reported pain relief of 30% or more with PEMF compared with 0% (0/12) of participants receiving placebo (RR 19.19, 95% CI 1.25 to 294.21; absolute risk difference 75%, 95% CI 53% to 97%). Fifty-five per cent (11/20) of participants reported total recovery of joint function with PEMF compared with 0% (0/12) of participants receiving placebo (RR 14.24, 95% CI 0.91 to 221.75; absolute risk difference 55%, 95% CI 31 to 79%). Moderate quality evidence from one trial (63 participants) indicated that LLLT plus exercise for eight weeks probably results in greater improvement when measured at the fourth week of treatment, but a similar number of adverse events, compared with placebo plus exercise. The mean pain score at four weeks was 51 points with placebo plus exercise, while with LLLT plus exercise the mean pain score was 32 points on a 100 point scale (mean difference (MD) 19 points, 95% CI 15 to 23; absolute risk difference 19%, 95% CI 15% to 23%). The mean function impairment score was 48 points with placebo plus exercise, while with LLLT plus exercise the mean function impairment score was 36 points on a 100 point scale (MD 12 points, 95% CI 6 to 18; absolute risk difference 12%, 95% CI 6 to 18). Mean active abduction was 70 degrees with placebo plus exercise, while with LLLT plus exercise mean active abduction was 79 degrees (MD 9 degrees, 95% CI 2 to 16; absolute risk difference 5%, 95% CI 1% to 9%). No participants in either group reported adverse events. LLLT's benefits on function were maintained at four months. Based on very low quality evidence from six trials, we were uncertain whether therapeutic ultrasound, PEMF, continuous short wave diathermy, Iodex phonophoresis, a combination of Iodex iontophoresis with continuous short wave diathermy, or a combination of therapeutic ultrasound with transcutaneous electrical nerve stimulation (TENS) were effective adjuncts to exercise. Based on low or very low quality evidence from 12 trials, we were uncertain whether a diverse range of electrotherapy modalities (delivered alone or in combination with manual therapy, exercise, or other active interventions) were more effective...
or less effective than other active interventions (for example glucocorticoid injection). Authors’ conclusions: Based upon low quality evidence from one trial, LLLT for six days may be more effective than placebo in terms of global treatment success at six days. Based upon moderate quality evidence from one trial, LLLT plus exercise for eight weeks may be more effective than exercise alone in terms of pain up to four weeks, and function up to four months. It is unclear whether PEMF is more or less effective than placebo, or whether other electrotherapy modalities are an effective adjunct to exercise. Further high quality randomised controlled trials are needed to establish the benefits and harms of physical therapy interventions (that comprise electrotherapy modalities, manual therapy and exercise, and are reflective of clinical practice) compared to interventions with evidence of benefit (for example glucocorticoid injection or arthrographic joint distension). US: http://onlinelibrary.wiley.com/doi/10.1002/14651858.CD011324/abstract

Bibliographic details

AccessionNumber
10000011324

Date abstract record published
02/10/2014

Record Status
This is an abstract for a Cochrane review