Noninvasive electrical bone growth stimulators for spinal fusion or foot and ankle indications

HAYES, Inc.

Record Status
This is a bibliographic record of a published health technology assessment. No evaluation of the quality of this assessment has been made for the HTA database.

Citation
HAYES, Inc.. Noninvasive electrical bone growth stimulators for spinal fusion or foot and ankle indications. Lansdale: HAYES, Inc.. Directory Publication. 2016

Authors' objectives
Noninvasive electrical bone growth stimulators (EBGS) are external devices that deliver electrical energy to a fracture or bone fusion site. The goal is to induce osteogenesis, stimulate bone growth, and promote healing of fresh, delayed, or nonunion bone fractures and surgical joint fusions. Controversy: Controversial issues related to clinical use of noninvasive EBGS include effectiveness versus placebo, device selection, optimal treatment parameters and duration, treatment adherence, and patient selection (i.e., which patients may benefit from the treatment). Relevant Questions: Are noninvasive EBGS devices effective in promoting bone healing, reducing pain, or improving function when applied to lumbar and lumbosacral spinal fusion sites? Are noninvasive EBGS devices effective in promoting bone healing, reducing pain, or improving function when applied to cervical spinal fusion sites? Are noninvasive EBGS devices effective in promoting bone healing, reducing pain, or improving function when applied to ankle or foot arthrodesis sites? Are noninvasive EBGS devices effective in promoting bone healing, reducing pain, or improving function when applied to osteochondral lesions of the talus (OLT) sites after arthroscopic surgery with or without biologic treatment? Are noninvasive EBGS devices safe? Have definitive patient selection criteria for noninvasive EBGS for each of these indications been established?

Final publication URL
The report may be purchased from: http://www.hayesinc.com/hayes/crd/?crd=50966

Indexing Status
Subject indexing assigned by CRD

MeSH
Humans; Ankle; Ankle Joint; Bone Development; Electric Stimulation Therapy; Foot; Spinal Fusion

Language Published
English

Country of organisation
United States

English summary
An English language summary is available.

Address for correspondence
HAYES, Inc., 157 S. Broad Street, Suite 200, Lansdale, PA 19446, USA. Tel: 215 855 0615; Fax: 215 855 5218 Email: hayesinfo@hayesinc.com

AccessionNumber
32017000029
Date abstract record published
04/01/2017