Project
Pilates for preventing and treating health conditions: a protocol for an evidence evaluation

Prepared for
National Health and Medical Research Council

NHMRC | Natural Therapies Working Committee
Canberra ACT 2601

CONFIDENTIAL

Research Protocol prepared by
Health Technology Analysts Pty Ltd

May 2020
Contents

Protocol information ... 4

List of tables ... 5

List of abbreviations .. 6

1 Background ... 7
 1.1 Description of condition and setting .. 8
 1.2 Description of intervention ... 9
 1.3 How the intervention might work ... 11
 1.4 Why it is important to do this review ... 12

2 Objectives ... 13

3 Methods ... 14
 3.1 Criteria for considering studies for this review ... 15
 3.1.1 Types of studies .. 15
 3.1.2 Types of participants ... 16
 3.1.3 Types of interventions ... 17
 3.1.4 Types of outcome measures .. 17
 3.2 Search methods for identification of studies .. 19
 3.2.1 Electronic searches .. 19
 3.2.2 Other sources ... 19
 3.3 Data collection and analysis .. 20
 3.3.1 Inclusion decisions .. 20
 3.3.2 Data collection process ... 21
 3.3.3 Requests for data .. 21
 3.3.4 Data items ... 21
 3.3.5 Missing data ... 22
 3.3.6 Tools to assess risk of bias in individual studies ... 22
 3.3.7 Risk of bias assessment process .. 23
 3.3.8 Measures of effect .. 23
 3.3.9 Unit of analysis issues ... 24
 3.3.10 Studies with more than two intervention groups .. 24
 3.3.11 Quantitative synthesis .. 24
 3.3.12 Non-quantitative synthesis .. 25
 3.3.13 Risk of reporting bias across studies .. 26
 3.3.14 Addressing risk of bias ... 26
 3.3.15 Subgroup analyses ... 27
 3.3.16 Certainty of the evidence .. 27
3.3.17 ‘Summary of findings’ table

Contributions of authors

Declarations of interest

References

Appendix A - Literature search strategy

Appendix B – Screening criteria

Appendix C – Risk of bias forms

Appendix D – Data extraction forms
Protocol information

Authors
Jorgensen MA, Allerdice S, Baidya S, Shikhule A, Miles A

1 Health Technology Analysts, Level 1, 370 Norton Street, Lilyfield, New South Wales 2040 Australia

Contact person
Please send all correspondence to Health Technology Analysts Pty Ltd

mailing address: Level 1, 370 Norton Street, Lilyfield, New South Wales 2040 Australia

email: natural.therapies@htanalysts.com.au

Dates
This Research Protocol received approval from the NHMRC Natural Therapies Working Committee on 25 May 2020.

History
The National Health and Medical Research Council (NHMRC) has been engaged by the Department of Health (Department) to update the evidence underpinning the 2015 Review of the Australian Government Rebate on Natural Therapies for Private Health Insurance (2015 Review) (1). The seven natural therapies to be reviewed in the first tranche are naturopathy, Pilates, Rolfing, shiatsu, Tai Chi, Western herbalism and yoga. These therapies are among those excluded from the private health insurance rebate as of 1 April 2019.

To support the NHMRC in their evidence review, Health Technology Analysts (HTAnalysts) has been engaged to conduct a systematic review of the evidence of clinical effectiveness of Pilates. Eligible studies received from the Department’s public call for evidence, the Natural Therapies Review Expert Advisory Panel (NTREAP) and the Natural Therapies Working Committee (NTWC) will also be included in the evidence evaluation.

This Research Protocol has been developed by HTAnalysts in conjunction with the NHMRC, the NTWC, and the NTREAP to provide a framework outlining the methodology that will be used to supplement the 2015 Review. It is intended that all associated materials will be developed in a robust and transparent manner in accordance with relevant best practice standards (2, 3).
List of tables

Table 1 Eligible design features of nonrandomised studies of interventions 16
List of abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BRISA</td>
<td>Regional Base of Health Technology Assessment Reports of the Americas</td>
</tr>
<tr>
<td>CINAHL</td>
<td>Cumulative Index to Nursing and Allied Health Literature</td>
</tr>
<tr>
<td>COMET</td>
<td>Core Outcome Measures in Effectiveness Trials</td>
</tr>
<tr>
<td>GRADE</td>
<td>Grading of Recommendations Assessment, Development and Evaluation</td>
</tr>
<tr>
<td>ITT</td>
<td>Intent-to-treat</td>
</tr>
<tr>
<td>NHMRC</td>
<td>National Health and Medical Research Council</td>
</tr>
<tr>
<td>NRSI</td>
<td>Nonrandomised study of an intervention</td>
</tr>
<tr>
<td>NTREAP</td>
<td>Natural Therapies Review Expert Advisory Panel</td>
</tr>
<tr>
<td>NTWC</td>
<td>Natural Therapies Working Committee</td>
</tr>
<tr>
<td>OR</td>
<td>Odds ratios</td>
</tr>
<tr>
<td>PAHO</td>
<td>Pan American Health Organization</td>
</tr>
<tr>
<td>PICO</td>
<td>Population, Intervention, Comparator, Outcome</td>
</tr>
<tr>
<td>PP</td>
<td>Per protocol</td>
</tr>
<tr>
<td>PRISMA</td>
<td>Preferred Reporting Items for Systematic Reviews and Meta-Analyses</td>
</tr>
<tr>
<td>RCT</td>
<td>Randomised controlled trial</td>
</tr>
<tr>
<td>RoB</td>
<td>Risk of bias</td>
</tr>
<tr>
<td>RR</td>
<td>Risk ratios</td>
</tr>
<tr>
<td>SD</td>
<td>Standard deviation</td>
</tr>
<tr>
<td>SR</td>
<td>Systematic review</td>
</tr>
<tr>
<td>TIDIER</td>
<td>Template for Intervention Description and Replication</td>
</tr>
</tbody>
</table>
1 Background
In 2015, a review of Pilates found no clear evidence demonstrating its efficacy in treating any clinical condition (4, 5). The 2015 review was underpinned by an overview of systematic reviews (SRs) that focused solely on Pilates and were published in the English language between 2008 and June 2014. Randomised controlled trials (RCTs) that were reported within included SRs and assessed Pilates delivered to treat any clinical condition were included, with outcomes selected according to predefined criteria. In this 2020 update, the evidence review will build upon the 2015 review but will not be limited by publication date and a broader range of study types will be eligible for inclusion (inclusive of pseudorandomised studies and nonrandomised studies of interventions [NRSIs]). The updated review will also include studies that assess Pilates delivered for primary prevention. Similar to the 2015 review, eligible comparisons will be Pilates versus control and Pilates versus other intervention. Studies not published in the English language will not be translated, and databases in languages other than English will not be searched.

The process for conducting the review is built upon the following framework:

1. source the clinical evidence by performing a systematic literature search of the literature,
2. identify eligible studies (RCT or NRSI) published in English and indexed in English language databases,
3. incorporate additional literature identified through non-database sources received from the Department’s public call for evidence, NTREAP and NTWC,
4. critically appraising and presenting the evidence, and
5. determine the certainty in the evidence base for each question, using a structured assessment of the body of evidence in accordance with GRADE methodology (6).
1.1 Description of condition and setting
Pilates was initially developed as a mind-body exercise for the fit population, and was primarily taught to gymnasts, dancers and boxers (7). However, since the late 1980s the use of Pilates has expanded considerably, and it is now used by the general population for wellbeing as well as being used by people with a broad range of clinical and preclinical conditions. These include conditions related to neuromuscular dysfunction (such as multiple sclerosis and balance disorders) and problems associated with chronic pain and ageing. The traditional Pilates method has also been modified for use in preventing or managing acute, subacute or chronic musculoskeletal dysfunction (such as low back pain) as well as injury management for post-acute rehabilitation (such as total hip or knee arthroscopy) (7).

Given the breadth of the review, and variety of potential conditions for which Pilates is used, a concise description of each condition or population addressed will be provided after conduct of the full text review.

Pilates can be practiced in a range of settings (see section 1.2) and as such this review will not be limited by setting.
1.2 Description of intervention

The traditional Pilates method was developed by Joseph Hubertus Pilates during the 1920s as a comprehensive body conditioning method directed towards development of both the body and the mind (8). The early form of Pilates’ method focused on building strength, similar to boxing training, and was targeted primarily at dancers (8). From the late 1930s Joseph Pilates taught group exercise classes to specific populations and semiprivate studio sessions using Pilates-specific equipment, as well as individually prescribed programs for those who had a range of problems or conditions (8).

Since the 1980s Pilates exercises have expanded beyond the dancing community, with second and third generation Pilates instructors (including Romana Kryzanowski, Eve Gentry, Philip Friedman and Gail Eisen) reinterpreting and modifying the traditional Pilates method over time. The Pilates method and exercises have been further refined over time to reflect contemporary knowledge of anatomy, physiology and human movement (8).

The Pilates system of body conditioning is founded on stabilising the core musculature (including the abdominal, gluteal and paraspinal muscles), while performing a controlled range of motions (9, 10). Exercises are performed according to six key principles: centring (tightening and strengthening the body’s core ‘trunk’ muscles); concentration (with sensory awareness); control (ensuring postural integrity and functional alignment); precision (the accurate application of the exercise technique); flow (ensuring a smooth transition between movements and exercises); and focused coordinated breathing (8, 11).

Contemporary Pilates involves a range of more than 500 exercises, which may be performed on a mat and using auxiliary apparatus or specially designed Pilates equipment. Pilates professional teaching skills are specific to the method and include the use of cueing by demonstration or verbal direction for correct anatomical function, as well as using imagery, metaphor and noninvasive hands on assistance for the correct performance of each exercise to facilitate improved motor control.

The intervention may be divided into two main categories: mat and apparatus exercises (11), with the large apparatus exercises involving the use of specialised Pilates equipment that provides adjustable spring resistance (e.g. Reformer, Trapeze Table or Cadillac, Wunda chair and Barrels). However, comprehensive Pilates may incorporate the use of both mat as well as small and large apparatus exercise within a single session, or a Pilates session may only use mat and selected apparatus. An integral aspect is the supervised and tailored use of small apparatus or the various large Pilates equipment, which provides assistance or resistance during the completion of various movements or exercises.

Pilates can be practiced at any time, with or without specialised equipment, and in any location where there is sufficient space. Most commonly Pilates is practiced in a designated Pilates studio using specialised equipment with an accredited Pilates professional providing supervised exercise and teaching mindful movement. It can be practiced by anyone, regardless of age or level of fitness, and is usually taught and practiced in small groups or individual sessions. Classes or exercise sessions can be adapted to provide gentle strength, flexibility and stability training, tailored to provide individual problem or condition specific Pilates exercise variations, or it can be modified to provide a more challenging traditional Pilates workout. After being taught the Pilates principles and completing a series of supervised tailored exercise sessions individuals may also practice Pilates at home, following a prescribed homework exercise program.
Contemporary Pilates classes typically range from 60 to 90 minutes in length and vary in the expertise of the instructor, the extent to which a program is tailored to the individual (e.g. general fitness or individual programs), size (groups or private sessions) and setting (gymnasium, private studio or in allied health practices such as physiotherapy clinics).

In Australia there are three main industry bodies that support Pilates practitioners in their professional practice. While the training of Pilates professionals varies, accredited member instructors typically hold a Diploma, or industry equivalent. The professional bodies also aim to regulate the quality and scope of Pilates practice, through provision of codes of conduct, codes of ethics and provision of continuing education.
1.3 How the intervention might work

Numerous physical benefits of Pilates have been suggested and are thought to arise in part due to the regular practice of exercise, which can enhance cardiopulmonary fitness. Pilates is also reported to improve muscular endurance and flexibility (12). By focusing on core muscle activity, the local, single-joint muscles and multi-joint muscles provide stability and produce motion (13). This integrated core muscle activity is thought to result in proximal stability for distal mobility which assists functional motor control. The Pilates instructor’s attention to anatomically accurate supervision and informed cueing is also thought to be effective in strengthening small underactive muscles and improving neuromuscular control (14).

Pilates exercises have been reported to reduce pain and disability and improve posture and enhance quality of life. This is proposed to occur through improvement in core stability, strength, flexibility, posture, muscle control, proprioception and body awareness (4).

The use of Pilates-specific equipment is said to not only improve strength, but also provide eccentric training at end range of movement and provide variable resistance training which is believed to produce the greatest comprehensive strength adaptations (15). It is suggested that the increase in coordinated muscle activity taught in Pilates contributes to improved static and dynamic balance, (14) particularly in older adults (16).

Pilates is believed to encourage movement, improve motor control and facilitate a return to functional activities, which why it is increasingly incorporated into physical therapy rehabilitation programs. In patients with low back pain, the practice of Pilates is intended to improve deep muscle stability and control of the spine while reducing the activity of superficial muscles, as well as to improve posture and body awareness, so as to ease pain and disability (10). The integration of mind and body balanced with breath control using modified Pilates is also thought to improve quality of life in people with certain conditions (17, 18) and has been suggested to be more effective than other physical therapies on upper extremity pain and function (19).
1.4 Why it is important to do this review

In Australia, natural therapies, including Pilates, are most often used in conjunction with conventional medicine and other strategies for maintaining good health and wellness. Pilates is also a popular form of exercise in Australia, with a 2013-14 survey estimating that more than 197 000 Australians participate in Pilates annually (20). For these reasons, it is important to synthesise the evidence for the effectiveness of Pilates, to enable consumers, health care providers and policy makers to make informed decisions about care.

The 2015 review identified 10 SRs containing evidence from 18 unique RCTs involving 11 to 422 participants across five clinical conditions. The authors proposed that, compared with control, there is (a) very low-quality evidence to suggest that Pilates may have some beneficial health effects in a number of conditions for a limited number of outcomes including the elderly (strength, balance and falls), people who are overweight and obese, survivors of breast cancer, and women with stress urinary incontinence; and (b) low to very low-quality evidence that Pilates may have an effect on selected outcomes in people with lower back pain.

Compared to other comparators, the 2015 review suggested that there is very low-quality evidence that Pilates may have beneficial effects relative to other comparators on selected outcomes in people with lower back pain.

Overall, the health effects of Pilates were uncertain (4). This was primarily due to the methodological limitations of the primary studies, which included small sample sizes, short follow-up periods and inconsistent outcome reporting. Incomplete reporting of effect estimates within included SRs was also noted as problematic.

The rationale for conducting this review is to update and enhance the evidence used to inform the 2015 Overview of Pilates (4). That is, to identify whether any new high-quality studies have been published and to address the evidence gaps noted. This is to ensure recommendations relating to the use of Pilates remain relevant and up to date.
2 Objectives
To conduct a systematic review of RCTs and NRSIs to evaluate the effectiveness of Pilates in individuals with a described injury, disease, medical condition or preclinical condition.

The intent is to evaluate the evidence representative of the populations and conditions commonly seen by the natural therapist in Australia, the intervention(s) commonly used by the therapist, and outcomes that align with the reasons why patients use the therapy and/or practitioners prescribe the therapy.
3 Methods

Methods reported in this protocol are based on that described in the Cochrane Handbook for Systematic Reviews of Interventions (21) and relevant sections in the Joanna Briggs Institute Reviewer’s manual (22). Covidence (www.covidence.org), a web-based platform for producing SRs, will be used for screening citations and recording decisions made. Covidence is compatible with EndNote and Microsoft Excel, which will be used for managing citations and data extraction, respectively. Where appropriate, RevMan (23) will be used for the main analyses and GRADEpro GDT software (www.gradepro.org) will be used to record decisions and derive an overall assessment of the certainty of evidence for each outcome guided by GRADE methodology (6). The final approved review protocol is to be registered on the international prospective register of SRs (PROSPERO).

To identify the evidence base for the clinical question, a systematic search of published medical literature will be conducted. All potentially relevant studies will be identified after applying prespecified inclusion and exclusion criteria as outlined below.
3.1 Criteria for considering studies for this review

3.1.1 Types of studies

Study design
Eligible studies are RCTs or NRSIs that examine the effectiveness of Pilates compared to control or another intervention.

The primary study of interest is an RCT. Cluster-randomised trials and crossover trials are also eligible for inclusion, and will be analysed using methods appropriate to the design (see Section 3.3.9) (24). If the method of randomisation is not specifically stated, or not strictly random, then the study will be judged to be pseudorandomised. Pseudorandomised controlled trials will be evaluated alongside RCTs, with methods of randomisation examined in the risk of bias assessment and any concerns about risk of bias addressed in the synthesis.

Certain NRSIs with design features as outlined in Table 1 are also eligible for inclusion. For NRSIs to be eligible for inclusion, the minimum design features include:

- allocation to, or practice of, the intervention occurs by choice (by the participant or other)
- the effect of the intervention in individuals (or clusters of individuals or groups) is compared with a contemporaneous control group

NRSIs in which the effect of the intervention is compared to a historical (or non-parallel or non-concurrent) control group are not eligible for inclusion due to concerns regarding risk of bias (e.g. due to residual confounding or unmeasurable changes in clinical practice over time). Case series with either post-test or pre-test/post-test outcomes, cross-sectional studies, case series and case reports are also not eligible for inclusion, as it is too problematic to assess the effect of the intervention in such studies with any confidence.

The inclusion of NRSIs is to ensure the evidence review adequately covers the breadth of health conditions and outcomes to inform health policy, particularly in the absence or paucity of RCT evidence for a health condition or when the RCT evidence is considered to be of low to very low certainty for an important outcome domain. This is likely to occur when the length of follow-up for the outcome is not feasible for an RCT, or the event rate of the outcome is so small that it requires a population-wide study for a measurable effect to be observed. In rare instances, it may be because of a strong preference for the intervention by prospective participants prevents the conduct of a suitable RCT (25), or the RCT evidence for a particular health condition and outcome is indirect and the question is better answered by available NRSI evidence (26).

Eligible NRSIs that are assessed to be at critical risk of bias for one or more domain (see Section 3.3.6) will not be included in the evidence synthesis because results from these studies are likely to lead to misinformed judgements about the effect estimate.
Table 1 Eligible design features of nonrandomised studies of interventions

<table>
<thead>
<tr>
<th>Design features of NRSIs included in the review</th>
<th>Definition / design features</th>
</tr>
</thead>
<tbody>
<tr>
<td>An experimental study in which people are allocated to the intervention/treatment being studied or a control/placebo group and the outcomes compared. The method of allocation is by choice, availability or chance.</td>
<td></td>
</tr>
<tr>
<td>A study in which outcomes from a defined group of people (the cohort) are followed over time, to examine associations between exposure and non-exposure to an intervention or factor under study. Outcome are recorded as they occur. A ‘prospective’ cohort study recruits participants before any intervention and follows them into the future.</td>
<td></td>
</tr>
<tr>
<td>A study in which outcomes from a defined group of people (the cohort) are identified to examine associations between exposure and non-exposure to an intervention or factor under study. A ‘retrospective’ cohort study identifies subjects from past records describing the interventions received and follows them from the time of those records.</td>
<td></td>
</tr>
<tr>
<td>A study that uses observations at multiple time points before and after an intervention (the ‘interruption’) is introduced to a group of people, and then compared to the outcomes at the same time points for a group of people that do not receive the intervention. The design attempts to detect whether the intervention has had an effect significantly greater than any underlying trend over time.</td>
<td></td>
</tr>
<tr>
<td>A study in which observations are made before and after the implementation of an intervention, both in a group that receives the intervention and in a control group that does not and compared at the same timepoint.</td>
<td></td>
</tr>
<tr>
<td>A study that compares people with a specific outcome of interest (‘cases’) with people from the same source population but without that outcome (‘controls’), to examine the association between the outcome and prior exposure (e.g. having an intervention). This design is particularly useful when the outcome is rare.</td>
<td></td>
</tr>
</tbody>
</table>

Source: Adapted from NHMRC [27, 28]; Chapter 24 Including nonrandomized studies on intervention effects [29]; Cochrane Childhood Cancer [30];

Publication date
There are no limitations on publication date, however, studies published after the systematic review literature search date will not be eligible for inclusion. Studies that are published (or submitted to the Department) after the literature search date will be listed within the ‘Studies Awaiting Classification’ table of the evaluation report. These studies will not be subject to a formal evidence evaluation, however, a brief statement about the study and its potential impact on the overall conclusions of the evidence review will be included under the relevant sections of the review (e.g. ‘Overall completeness and applicability of evidence’).

Studies published in languages other than English
The literature search, as well as the Department’s call for evidence, will not be limited by language of publication. Databases in languages other than English will not be searched, however, studies in languages other than English may be identified via the English-language databases. For pragmatic reasons, potentially eligible studies will not undergo full-text translation or data extraction, but will be documented via a process outlined in Section 3.3.1 ‘Studies published in languages other than English’.

3.1.2 Types of participants
People of any age with any injury, disease, medical condition or preclinical condition are eligible for inclusion. This includes disease prevention in at-risk healthy populations, which is broadly defined as those who are at increased risk of becoming ill or injured based on social, biomedical or behavioural risk factors (31). For the purposes of this review, social determinants include factors such as income, education, employment and social support; biomedical factors include a person’s age, genetic make-up and health status (such as obesity, high blood pressure, high cholesterol, vitamin deficiency) and
genetic make-up; and behavioural factors include a person’s lifestyle choices (e.g. alcohol consumption, diet, exercise, tobacco and other drug use, etc.).

Healthy participants seeking health improvement, such as general wellbeing, fitness, aesthetic improvements, resilience and cognitive or emotional intelligence are not eligible for inclusion; however, a study with eligible and ineligible populations will be included if separate data is available for the eligible population/s.

3.1.3 Types of interventions

Intervention
All styles and forms of Pilates are eligible for inclusion. That is, any exercise activity in the name of Pilates instruction that is delivered by an instructor to an individual or group of individuals, or self-practiced.

There are no limits on intensity, duration of practice, or mode of delivery and studies will be included irrespective of whether the intervention is delivered by an instructor or through other media (e.g. instructional videos). Studies that include mixed forms of Pilates (i.e., mat or apparatus) will be included however, studies that include Pilates delivered in combination with other forms of exercise will be excluded, unless the effect of Pilates alone can be discerned.

To allow for potential subgroup analysis (and to inform decision-making), studies will be stratified based on whether the participants receive instructor-led Pilates (see Section 3.3.15).

Comparators
There are no restrictions on the type of eligible comparators, noting that the analysis will stratify the evidence into two comparisons: (i) control (inclusive of no intervention, wait list or usual care, unless active); and (ii) other comparator (inclusive of usual care or control if considered active).

Where usual care is poorly described or where usual care is described with Pilates as an adjunct (i.e. Pilates plus usual care vs usual care alone), it will be considered an inactive intervention. ‘Other’ comparators may include (but will not be limited to) pharmacologic treatments, manual therapies, exercise programs or other forms of physical activity designed to improve health.

Cointerventions (e.g. diet, education programs, lifestyle modification, or medication) may be administered simultaneously to the intervention and comparison group. Studies with cointerventions will be included if all arms of a study receive the same cointerventions (i.e. the effectiveness of Pilates is not confounded).

Studies comparing different styles, forms or components of Pilates with one another will be excluded.

3.1.4 Types of outcome measures

Outcome role
Outcomes will not be used as a criterion for including or excluding studies.

Outcome domains of interest
Outcomes are intended to align with the reasons why patients use the therapy and/or practitioners prescribe the therapy. This includes recovery, rehabilitation, and changes in disease outcomes and symptoms (e.g. pain, joint range of motion, strength, balance and accepted surrogate outcomes such as HbA1C for diabetes, body mass index for weight gain or loss, lung function tests), health
related psychological/behavioural outcomes, health related quality of life, self-reported benefits, symptoms and functional ability, medication use or compliance with conventional medicine treatment; and injury or disease specific prevention outcomes (e.g. falls prevention, smoking cessation).

Restrictions: Consistent with the terms of reference of NTREAP, personal health care preferences, patient-reported experience measures (PREMs) (e.g. satisfaction with care), safety, quality and economic outcomes are out of scope.

Outcome measures and timepoints of interest
Any effectiveness outcome anticipated to demonstrate a treatment achieves its intended purpose is eligible for inclusion (28, 32). There are no limitations on time points (e.g. short and long term outcomes) or outcome measure (e.g. objective and subjective measures such as clinical and laboratory assessments and patient-reported outcome measures [PROMS], preferably measured using validated tools, are eligible).

As there are a broad range of populations eligible for inclusion in the review, it is not possible to prespecify outcomes. All prespecified outcomes measured in each eligible RCT or NRSI will be listed in the ‘Characteristics of included studies’ tables; however, results will only be extracted for those outcomes identified as critical or important to the review. For each identified population, results for a maximum of seven critical (or important) outcomes will be reported in GRADE summary of findings tables and corresponding evidence statements (see Section 3.3.17).

Outcome selection will occur after identification of eligible studies using a prespecified approach. To avoid introducing bias, outcomes will be prioritised by the NTWC, who will be provided with a list of conditions, outcome domains and outcome measurements (including measurement tools and time points) to prioritise. This list will be derived from the outcomes reported in studies identified for inclusion in the review, and, where available, core outcome set/s for a particular condition (core outcome sets will be identified by searching COMET [http://www.comet-initiative.org/]).

Throughout the outcome prioritisation exercise, the NTWC will remain blinded about the characteristics or results of included studies to prevent knowledge of study results or other characteristics (such as study design) from influencing decision-making. In determining the critical and important outcomes, the NTWC will be guided by GRADE (6), and focus on the relevance and validity of outcome measures. Where appropriate, outcome domains reported using different measurement tools will be grouped and reported accordingly (see Section 3.3.8).

Outcomes reported at different timepoints will be grouped and considered as follows: short term, intermediate term, long term, or not specified. Determining whether something is considered short, intermediate or long term for a population will be guided by the published evidence, the NTWC and COMET. To avoid unit-of-analysis issues associated with repeated observations (see Section 3.3.9), data from a single time point will be selected for each outcome, as determined by the NTWC during outcome prioritisation. Where multiple timepoints are considered critical or important to decision-making (e.g. short- and long-term remission in symptoms) separate outcomes will be specified for each timepoint.
3.2 Search methods for identification of studies

3.2.1 Electronic searches
The literature search strategy (see Appendix A) was developed in Ovid (for Embase, MEDLINE, and Emcare) based on the key element of research question (i.e., the intervention). The search is not limited by population or outcome, but rather by study type; with methodological filters for identifying RCTs and NRSIs and exclusions for publication types developed and published previously (33).

In developing the search strategy, we appraised and adapted the relevant search strategies provided in the 2015 review; with recent SRs identified in the scoping report and studies suggested by the NTWC also reviewed to identify other potentially relevant concepts. Terms or concepts proven not suitable were removed and other terms added.

No date, language or geographic limitations will be applied when conducting the search of English language databases. Non-English databases will not be searched.

The strategy will be adapted to suit the required syntax for the following electronic bibliographic databases:

- Embase (via Ovid)
- MEDLINE (via Ovid)
- Cochrane Central Register of Controlled Trials (via Cochrane Library)
- Emcare (via Ovid) – coverage of all nursing specialty areas
- PsycINFO (via Ovid) – coverage of behavioural science and mental health
- AMED (via Ovid) – coverage of Allied and Complementary Medicine
- PEDro – coverage of physiotherapy
- CINAHL (via EBSCOHost) – Cumulative Index to Nursing and Allied Health Literature
- SPORTDiscus (via EBSCOHost) – coverage of exercise physiology, medicine, biomechanics, coaching, counselling, psychology and sports medicine
- PubMed (limited to in-process citations and citations not indexed in MEDLINE) – to retrieve citations not yet indexed in Medline
- Pan American Health Organization (PAHO) Virtual Health Library (VHL) – including Lilacs (Health information from Latin America and the Caribbean countries), PAHO IRIS (institutional repository for information sharing), and BRISA (Regional Base of Health Technology Assessment Reports of the Americas)

3.2.2 Other sources
Reference lists of key relevant articles will be checked to identify any additional studies not identified through searches of the primary databases. The public will also be invited by the Department to submit references for published research evidence (not examined in the 2015 Review), however, any grey literature will be excluded.
3.3 Data collection and analysis

Included studies will be critically appraised, appropriate data extracted into data extraction tables, and the results analysed and summarised into appropriate categories according to identified populations and conditions and comparators. Summary of Findings tables will be developed for up to seven critical and important outcomes, guided by the GRADE framework.

3.3.1 Inclusion decisions

Studies identified in the literature searches

Title/abstract screening

Citations (title/abstracts) retrieved by the literature searches will be imported into EndNote and duplicates removed. Citations will then be imported to Covidence (www.covidence.org), an online tool that streamlines the screening and data extraction stages of a systematic review. Each citation (titles and abstract) will be screened by one evidence reviewer who will discard ineligible studies (marked as irrelevant and tagged with a reason for exclusion) and retain those with relevant data or information (marked as relevant or maybe). Where there is uncertainty regarding relevance, a decision will be made through discussion with the lead reviewer, who will either decide to mark the citation as irrelevant or take it through to full text. Citations that are in a language other than English will be tagged and managed as described in the below under *Studies published in languages other than English*.

Full text screening

Full text articles identified for possible inclusion in the evidence synthesis will be retrieved and assessed for inclusion by one reviewer. A prespecified, hierarchical approach as outlined in Appendix B will be used to annotate reasons for exclusion, with the results of the study selection process illustrated in a PRISMA diagram. Ineligible studies will be marked with a reason for exclusion and listed in a table in the technical report under *Characteristics of excluded studies*. Where there is uncertainty regarding inclusion, a decision will be made through discussion with the lead reviewer. The lead reviewer will also reinspect a random 20% sample of articles marked as excluded to ensure adherence to the *a priori* exclusion criteria and any differences will be resolved by discussion. If additional expertise or advice regarding the application of the PICO criteria is required, further follow up with the NTWC will occur (noting that the NTWC will be presented with excerpts from the publication relevant to the query while remaining blinded to other identifying details such as the study citation, design, size, risk of bias and results).

If a study does not contain the required PICO information for a decision to be made regarding its eligibility, the information will be sought from the study’s authors, through an open-ended request. Trial registration numbers, author names and study titles, locations and dates will be used to identify multiple reports arising from the same study. Eligible studies that are not available in English will be noted and managed as described in the below under *Studies published in languages other than English*.

Evidence provided through the Department’s public call for evidence

Potentially relevant primary studies identified by the NTWC, NTREAP, and other key stakeholders will be considered for inclusion if they satisfy the eligibility criteria described in Section 3.1 above.
All of the submitted literature will be collated, tabulated, and cross-referenced with the evidence identified in the literature search described in Section 3.3.1 above. In-scope studies not identified in the literature search will be incorporated into the evidence evaluation. A rationale for exclusion (as noted in Appendix B) will be provided for all studies considered out of scope (documented in a table within the technical report).

Studies published in languages other than English

Studies published in languages other than English will undergo title and abstract translation using Google translate (or an equivalent tool). If online translation does not facilitate understanding of the title and abstract then these studies will be listed in a table as ‘Studies unable to be translated or interpreted at the title/abstract stage’. Translated titles and abstracts will be screened to remove irrelevant citations, with articles excluded at title and abstract screen reported in the ‘Results of the search’.

Translated titles and abstracts will be reviewed and evaluated against the ‘Criteria for considering studies for inclusion in the review’. Full text translation will not occur to determine eligibility. Studies assessed as potentially eligible for inclusion in the review will be recorded in a ‘Studies Awaiting Classification’ table. This information will also be reflected in the PRISMA flow diagram.

The potential risk of language bias and its implications for the evidence evaluation will be discussed in relevant sections of the Evaluation Report (such as ‘Overall completeness and applicability of evidence’ and ‘Agreements and disagreements with other studies or reviews’).

3.3.2 Data collection process

The characteristics of all included studies will be extracted by one reviewer using a standardised data collection form. (see Appendix D). Outcome data will be extracted after agreement has been reached regarding the critical and important outcomes to be appraised (see Section 3.1.4). Pretesting will involve all reviewers, who will data extract the required information from the same three primary studies specifically selected to cover the breadth of the PICO and anticipated study designs identified for inclusion in the review. The lead reviewer will inspect the forms to ensure the relevant data are extracted as planned and any necessary revisions will be made to ensure consistency.

All data extraction forms will be checked for completeness and accuracy by the lead reviewer. Where there is uncertainty or disagreement regarding included data, a decision will be made through discussion.

3.3.3 Requests for data

Eligible primary studies not published in English, ongoing trials and studies published as conference abstracts with incomplete results will be identified for inclusion. Study authors will be contacted through an open-ended request for further information. If no further data are available, the study will be noted as ‘Ongoing’ or within the ‘Studies Awaiting Classification’ table and will not be included in the evidence appraisal.

No attempts will be made to obtain or clarify data from published peer-reviewed studies.

3.3.4 Data items

The following characteristics of included studies will be extracted: study design, year conducted, setting and location, participant characteristics (including demographics, comorbidities, etc.),
intervention and comparator characteristics (including number of treatment sessions, program duration, co-interventions), outcomes (including measurement method, timing, or severity), and funding sources.

3.3.5 Missing data
No imputation for missing data will be conducted. Studies with missing data will be included alongside other studies for that condition; either in the narrative (non-quantitative) synthesis of results or on forest plots showing the sample size. Implications of the missing data will be considered when interpreting the evidence and will be discussed under ‘Overall completeness and applicability of evidence’. Investigations into missing data within a study (e.g. a review of the clinical trial protocol) will be noted when assessing the risk of bias for that study (see Section 3.3.6).

3.3.6 Tools to assess risk of bias in individual studies
The risk of bias of included studies will be assessed using the most appropriate risk of bias assessment tool according to the type of study as follows:

- **RCTs**: Revised Cochrane Risk of Bias tool v2.0 (34)
- **NRSIs**: ROBINS-I: a tool for assessing risk of bias in nonrandomised studies of interventions (35)

Randomised controlled trials
The risk of bias of RCTs will be assessed using the revised Cochrane Risk of Bias tool (36). This tool is made up five domains assessing bias arising from the randomisation process; bias due to deviations from intended interventions; bias due to missing outcome data; bias in measurement of the outcome; and bias in selection of the reported result. Each domain will be assessed for bias, which will be recorded as ‘high’, ‘low’, or ‘some concerns’.

An overall risk of bias for each outcome in the RCT will be judged based on the following criteria:

- **overall low risk of bias** – low risk of bias for all key domains
- **some concerns** – at least one domain has some concerns raised, but none are found to be at high risk of bias
- **overall high risk of bias** – high risk of bias for one or more key domains

Nonrandomised studies interventional studies (NRSIs)
Critical appraisal of NRSIs will be guided by the methods described by Cochrane (35) using the ROBINS-I tool. Potential confounders and cointerventions for a population identified for inclusion will be identified and agreed through discussion with the NTWC prior to assessment of the risk of bias. ROBINS-I evaluates the risk of bias observed in the following domains: confounding, selection of participants, classification of interventions, deviations from intended interventions, missing data, measurement of outcomes and selective reporting. Each domain will be judged for risk of bias, which will be recorded as ‘low’, ‘moderate’, ‘serious’, ‘critical’, or ‘no information provided’.

The overall risk of bias judgement for a specific outcome will use the following guide:

- **overall low risk of bias** – the study is comparable to a well-performed RCT and is judged to be a low risk of bias for ALL domains.
• overall moderate risk of bias – the study appears to provide sound evidence for a nonrandomised study but cannot be considered comparable to a well-performed randomised trial. The study is judged to be a low or moderate risk of bias for ALL domains.

• overall serious risk of bias – the study has some important problems and is judged to be at serious risk of bias in at least ONE domain, but not a critical risk of bias in any domain.

• overall critical risk of bias – the study is too problematic with regards to this domain to provide any useful evidence on the effectiveness of the intervention. The study is judged to be at critical risk of bias in at least ONE domain.

• no information – there is no information on which to base a judgement about overall risk of bias. There is no clear indication that the study is at serious or critical risk of bias AND there is a lack of information in one or more key domains of bias.

Studies rated as at critical risk of bias in any domain will be excluded from the reporting of results, synthesis and conclusion; however, study details will be included under ‘Characteristics of included studies’.

3.3.7 Risk of bias assessment process

The risk of bias for each included study will be assessed by one reviewer. The lead reviewer will then check and confirm all assessments made. Disagreements will be resolved by discussion, with advice sought from a third reviewer if agreement cannot be reached.

To ensure consistency among reviewers, pretesting of risk of bias assessments will be achieved by all reviewers completing assessments for three RCTs and three NRSIs (using RoBv2.0 and ROBINS-I, respectively). Studies will be selected to cover the breadth of the PICO and included study designs. The lead reviewer will inspect the forms to ensure consistency, and any differences will be resolved through discussion.

For each outcome, judgements regarding risk of bias (e.g. low, moderate, high, critical) will be reported by domain, with supporting information and a rationale for the judgement provided in separate risk of bias forms (see Appendix C). An overall risk of bias judgement for each critical or important outcome will be described in the ‘Characteristics of included studies’ table.

3.3.8 Measures of effect

Dichotomous data will be presented as risk ratios (RR) with 95% confidence intervals and p-values. Continuous data will be reported as mean difference (along with the standard deviation (SD) and number of participants). Standardised mean difference will be used when different scales are used to measure the same conceptual outcome (e.g. function). To ensure that all the scales point in the same direction of effect, data from one set of studies will be adjusted before standardisation by multiplying the mean value by -1 to be consistent with the other set of studies. Time-to-event data will be presented as hazard ratios.

To reduce effects of confounding, summary statistics from NRSIs will be reported as adjusted effect estimates (e.g. adjusted odds ratios (OR) from logistic regression or adjusted rate ratios from Poisson regression analyses), where available. The variables that have been used for adjustment will be recorded.

As there are a broad range of populations eligible for inclusion in the review, it is not possible to prespecify the minimal clinically important differences for each outcome. However, where possible,
the minimal clinically important difference will be sourced from published reports or will be guided by advice from the NTWC.

3.3.9 Unit-of-analysis issues

No imputation for unit-of-analysis issues will be performed.

While intervention-related clustering is a possibility in this review, it is considered unlikely that included studies will have provided adequate details to enable clusters to be accounted for in their analyses. No adjustments will be made for intervention-related clustering using a statistical method. However, where such clusters are identified, this will be noted in the relevant part of the review along with discussion of the potential impacts of the clustering on the review findings.

Cluster-randomised trial

To avoid a unit-of-analysis error in a cluster-randomised trial we will extract and report effect estimates from analyses undertaken by the trial authors. Information regarding the approach used to account for the cluster design will be recorded. If the study authors have not provided information relating to the method of adjustment (i.e., the estimate of the relative variability within and between clusters), the implications of the missing data will be considered when interpreting the evidence and will be discussed under 'Overall completeness and applicability of evidence'.

Crossover trial

To avoid a unit-of-analysis error in a crossover trial, only data from the first period will be included in the analysis. Studies reporting paired analysis will be discussed separately, and the potential impact of selective reporting will be discussed under 'Overall completeness and applicability of evidence'.

Repeated observations

To avoid a unit-of-analysis error in studies reporting results from more than one timepoint, results from a single timepoint will be selected for any given outcome, and only data from that timepoint will be presented in the analysis. The timepoint selected will be based on that determined to be critical or important for decision-making as outlined in Section 3.1.4.

3.3.10 Studies with more than two intervention groups

If the included studies have multiple treatment groups, only single pairwise comparisons of the intervention with a comparator (i.e. ‘control’ or ‘other’) will be considered. If appropriate to combine like groups, we will combine to create a single pairwise comparison. The combining of summary statistics across groups will be as described in Chapter 6 of the Cochrane Handbook (37).

3.3.11 Quantitative synthesis

Synthesis will only be undertaken for studies that compare Pilates with ‘control’. Results data from studies comparing Pilates with ‘other’ interventions will be extracted and presented in data tables, but will not be synthesised further, except where requested by the NTWC. These data will be presented as an ‘evidence inventory’ to provide a snapshot of the available evidence comparing Pilates with ‘other’ interventions.

The NTWC may request that data comparing Pilates with an ‘other’ intervention be synthesised, where:

1. at least two studies compare the effect of Pilates with the same active comparator, and the comparator is sufficiently homogenous across studies to support synthesis, and
2. at least two of these studies are at low or moderate risk of bias, and
3. the comparator represents an accepted, evidence-based ‘gold standard’ of care for the population in question.

Such cases will be identified by the NTWC through blinded discussions with the evidence reviewer at the data synthesis stage, or prior to provision of the first draft evaluation report.

Data from RCTs
Data synthesis from RCTs will be performed using RevMan 5.3 and forest plots presented. For each comparison and outcome effect estimates will be combined across studies using a random effects model to take into account expected differences between studies. Statistical heterogeneity will be assessed by visually inspecting the overlap of confidence intervals on the forest plots, formally testing for heterogeneity using the Chi2 test (using a significance level of $\alpha=0.1$), and quantifying heterogeneity using the I2 statistic (38).

Effect estimates will not be combined across outcomes if analysis of covariance has been used to adjust for baseline measures, or for time-to-event data reported as hazard ratios.

Data from NRSIs
Where appropriate, data synthesis from NRSIs will be performed using RevMan 5.3 and forest plots presented. Within each comparison we will combine effect estimates across studies for each outcome using a random effects model to take into account expected differences between studies. Statistical heterogeneity will be assessed by visually inspecting the overlap of confidence intervals on the forest plots, formally testing for heterogeneity using the Chi2 test (using a significance level of $\alpha=0.1$), and quantifying heterogeneity using the I2 statistic (38).

Effect estimates will only be combined across outcomes if the included NRSIs are judged to be at low to moderate risk of bias (see Section 3.3.6) and are sufficiently homogenous to be combined. This means the PICO criteria of the NRSIs must be sufficiently similar and the study design features should be comparable.

3.3.12 Non-quantitative synthesis
The evidence review will provide a structured, narrative summary of the results for each condition identified, along with risk of bias assessments, and other intervention characteristics, in tables structured by comparator (‘control’ or ‘other’ intervention), outcome domain, and study design (ordered and grouped by risk of bias, then study size). Where possible, a visual representation of the results of included studies will be presented in a forest plot (without a summary estimate) grouped by study design features and risk of bias.

The narrative summary will include a brief description of the condition and studies identified (including study design, size and population demographics). This will be followed by a summary of results grouped by comparator and outcome domain. Result from each study will be reported, with the range and magnitude of observed effects noted. For studies where the results are incompletely reported (i.e., only the direction of effect of reported; the effect estimate is reported but with no confidence intervals; or the direction of effect is reported along with a p-value, but there is of no effect estimate), we will report the available information. If the reported information allows for calculation of effect estimates or imputation of missing statistics (e.g. SD), we will perform the calculations as described in Chapter 6 of the Cochrane Handbook (37).
To describe an overall effect across multiple studies for each outcome (for studies comparing Pilates with control only), we will describe the magnitude, range and distribution of observed effects across the studies using a simple vote count based on direction of effect (e.g. X/Y studies reported an effect favouring the intervention for the outcome Z). Studies that are judged to be at low risk of bias and are powered to demonstrate an effect will take precedence over studies that are underpowered and or judged to be at moderate or high risk of bias (i.e., will be called out and highlighted in the text). Any important differences in study size or design features that may influence the interpretation of results will be considered and discussed in the text. Qualitative descriptors describing the size of the effect (small, large etc.) will be used only where appropriate and will be based on the smallest difference that patients perceive as beneficial (or detrimental) for that outcome.

3.3.13 Risk of reporting bias across studies

Given the size and breadth of this review, it is expected that a broad approach to data synthesis will transpire. This means, summary estimates will include an outcome domain (e.g. pain) measured at a time point within an approximate, specified period (e.g. latest timepoint reported), using any instrument. This will increase the number of studies that will be eligible for inclusion in a summary estimate. As noted in Section 3.3.5, the implications for missing data within studies will be considered when interpreting the evidence. Similarly, judgements regarding missing data across studies will be made based on available information (e.g. ‘Studies Awaiting Classification’) and discussed under ‘Overall completeness and applicability of evidence’, noting that approaches for assessing bias due to missing studies (such as searching clinical trial registers, grey literature, or other reports) will not be performed.

If more than 10 RCTs are included for a PICO, funnel plots (of effect estimates against their standard errors) will be generated in RevMan 5.3 in order to determine possible non-reporting bias. If, after visual inspection of the funnel plot there is evidence of asymmetry (suggesting small-study effects or missing results), a brief statement about the potential impact on the overall conclusions of the evidence review will be included under the relevant sections of the review (including the ‘Overall completeness and applicability of evidence’). Other possible reasons for funnel plot asymmetry will also be considered at this time (e.g. poor methodological quality, true heterogeneity, chance) (39). No additional statistical analysis for testing for small-study effects will be conducted.

3.3.14 Addressing risk of bias

All RCTs will be included in the review, regardless of judgements made regarding risk of bias. A description of the risk of bias in individual domains will be presented along with the estimated effect estimate. To examine the impact of risk of bias, a sensitivity analysis will be conducted, with studies judged to be at high risk of bias to be removed from the analysis. The impact of this change will be noted and discussed under ‘Quality of evidence’.

NRSIs rated as being at critical risk of bias across one or more domain will not be included in the reporting of results, synthesis and conclusion. A brief statement about the impact of the exclusion of NRSIs with critical risk of bias on the overall conclusions of the evidence review will be included under the relevant sections of the review (including the ‘Overall completeness and applicability of evidence’).
3.3.15 Subgroup analyses
We do not plan to undertake any subgroup analyses of subsets of participants within studies; however, if there is inconsistency between effect estimates, subgroup analysis will be used to explore possible sources of heterogeneity relating to delivery of the intervention. Studies will be grouped according to intervention characteristics (i.e., intensity, duration, mode of delivery, or who delivers) and a standard test for heterogeneity across the subgroups will be reported.

3.3.16 Certainty of the evidence
Across each population, we will assess the certainty of the evidence for each outcome using the GRADE approach (6). Evidence from RCTs and NRSIs will be evaluated separately and only evidence comparing Pilates with ‘control’ will be presented.

The GRADE process provides a framework for determining the certainty of the evidence and is based on consideration of the following five factors:

- **Risk of bias.** Based on the summary assessment across studies for each outcome reported for a comparison (40).
- **Inconsistency.** Based on heterogeneity in the observed intervention effects across studies that suggests important differences in the effect of the intervention and whether this can be explained (41).
- **Imprecision.** Based on interpretation of the upper and lower confidence limits in relation to a minimal clinically important threshold (i.e., the confidence interval includes both appreciable benefit and harm); and whether the optimal information size has been reached (i.e., the total number of patients meets the required sample size for a sufficiently powered individual study). In the absence of a published clinically important threshold a rough guide will be used (i.e., a 25% relative risk reduction or increase) (42).
- **Indirectness.** Based on important differences between the review questions and the characteristics of included studies that may lead to important differences in the intervention effects (43).
- **Publication bias.** Based on the extent to which the evidence is available. Publication bias would be suspected when the evidence is limited to a small number of small trials (44).

The certainty of evidence will be categorised as follows:

- **High (⊕⊕⊕⊕):** further research is very unlikely to change the confidence in the estimate of effect
- **Moderate (⊕⊕⊕):** further research is likely to have an important impact in the confidence in the estimate of effect
- **Low (⊕⊕):** further research is very likely to have an important impact on our confidence in the estimate of effect and is likely to change the estimate
- **Very low (⊕):** any estimate of effect is very uncertain

For each domain, a judgement will be made about whether there are serious, very serious or no concerns; resulting in an overall GRADE describing the certainty of evidence for each outcome. Footnotes will be used to record judgements made about downgrading (or upgrading) the evidence (see ‘Summary of findings’ table). Scoring of the certainty of the evidence will begin as ‘high’ for RCTs and NRSIs (score=4), which can be downgraded by –1 for each domain with serious concerns or
-2 for very serious concerns (6, 45). The certainty of evidence can also be upgraded in certain circumstances. Factors that will be considered for upgrading the evidence include the following:

- **Large magnitude of an effect.** When large or very large effect estimates are observed, and there is more confidence in the results (sufficient number of events to be precise).
- **Dose-response gradient.** When there is a clear relation between outcome and increasing exposure levels.
- **Effect of plausible residual confounding.** If there are clear factors that have likely led to an under-estimate of the true effect such as unmeasured or unknown determinants in the adjusted analysis that are likely to be distributed unequally between intervention and control groups (6).

3.3.17 ‘Summary of findings’ table

For each population, findings for the critical and important outcomes (see Section 3.1.4), will be reported in summary of findings tables that will be prepared using the GRADEpro GDT software (www.gradepro.org). The findings from RCTs and NRSIs will be presented separately. Estimates of treatment effects for each outcome will be reported as absolute and relative risks (or standardised means). In the absence of quantitative data, a narrative synthesis will be provided (see Section 3.3.12). All critical and important outcomes will be reported, regardless of whether the findings demonstrate a clinically meaningful change.

The summary of findings tables will provide a summary of each of the included outcomes and the certainty of evidence rating for each outcome in a quick and accessible format (6).

As part of the summary of findings table, an evidence statement pertaining to each outcome will be included. This statement will be guided by the following format: *The practice of Pilates in [population] [is suggested to, may, results] in [little to no effect, reduce, increase, promote etc.] on [outcome] compared with [control].*

A technical report that presents, in detail, the evidence base for each research question by outcome will be developed and will include the following information:

1. The methodology used to identify the evidence base (documented systematic literature search, inclusion and exclusion criteria described).
2. The characteristics of included studies, data extraction and risk of bias forms.
3. Detailed results, presented by outcome, which will contain detailed information about the evidence assessment.
Contributions of authors

MJ wrote and developed the draft Research Protocol with contributions in writing sections, providing comment and proofreading final drafts from SA, SB, AM and AS. The search strategy was developed and tested by MJ and SA. AM and AS advised on the screening and data extraction process.

NTREAP and NTWC provided expert advice, especially in relation to intervention, study design and eligibility criteria. Cochrane Australia conducted a methodological review of the draft protocol.

Declarations of interest

All named authors declare they have no financial, personal or professional interests that could be construed to have influenced the conduct or results of this systematic review.

In line with the process to establish any NHMRC committee, each committee member was asked to disclose their interests. Potential conflicts of interest among NHMRC NTWC members are lodged with the NHMRC and are available online.

This work is paid for by the National Health and Medical Research Council (NHMRC) under Official Order 2019-20P026.
Appendices

References

Appendix A - Literature search strategy

Concept: Study design limits (RCTs, NRSIs, not animals)
1. exp comparative study/ or comparative study.mp. or exp clinical trial/ or clinical trial.mp. or randomized controlled trial.mp. or random?ed controlled trial.mp. or exp randomised controlled trial/ or exp randomization/ or randomization.mp. or random?ation.mp. or exp single blind procedure/ or single blind procedure.mp. or exp double blind procedure/ or double blind procedure.mp. or exp triple blind procedure/ or triple blind procedure.mp. or exp crossover procedure/ or crossover procedure.mp. or exp placebo/ or placebo*.mp. or random*.mp. or rct.mp. or single blind.mp. or single blinded.mp. or double blind.mp. or double blinded.mp. or treble blind.mp. or triple blind.mp. or triple blinded.mp. or exp prospective study/ or prospective study.mp.
2. exp clinical study/ or exp case-control study/ or exp family study/ or exp longitudinal study/ or exp retrospective study/ or exp cohort analysis/ or (cohort adj1 stud*).mp. or (case-control adj1 stud*).mp. or (exp prospective study/ not random?ed controlled trials.mp.) or (follow up adj1 stud*).mp. or (observational adj1 stud*).mp. or (epidemiologic* adj1 stud*).mp. or (cross sectional adj1 stud*).mp.
3. case report/
4. (editorial or letter or comment or historical article).pt.
5. (animals/ or nonhuman/) not humans/
6. 3 or 4 or 5

Concept: Pilates
7. Exercise Movement Techniques/ (MeSH term to be used for MEDLINE)
8. exp pilates/ (Emtree term to be used for Embase and Emcare)
9. pilates.af.
10. or/7-9

Concept: evidence hierarchy for screening
11. (10 AND 1) NOT 6
12. (10 AND 2) NOT 6

Note:
The addition of reformer, trapeze, mat, Wunda chair, or Barrels did not alter the number of hits
The above strategy was developed in-house and will be adapted to suit EBSCOHost, the Cochrane Library and PubMed (limited to in-process citations and citations not indexed in MEDLINE).
Ovid syntax

Exp explodes controlled vocabulary term (i.e. includes all narrower terms in the hierarchy)
* denotes a term that has been searched as a major subject heading
/ denotes controlled vocabulary terms (EMTREE)
$ truncation character (unlimited truncation)
$\n truncation limited to specified number (n) of characters (e.g. time$1 identifies time, timed, timer, times but not timetable)
* truncation character (unlimited truncation)
? substitutes any letter (e.g. oxid?ed identifies oxidised and oxidized)
adjn search terms within a specified number (n) of words from each other in any order
.ti. limit to title field
.ti,ab. limit to title and abstract fields
.kw,ti,ab. limit to keyword, title and abstract field
.pt limit to publication type

CINHAL syntax

* truncation character (unlimited truncation)
wildcard character will replace 1 or 0 characters (e.g. f#etus will retrieve fetus and foetus)
? wildcard character will replace one character (e.g. wom?n will retrieve women and woman)
MH - Search the exact CINAHL® subject heading; searches both major and minor headings
MH"heading"+ Search an exploded subheading
Ti search title fields
AB search abstract fields
Nn – Proximity “near” operator will find a result if the terms are within a certain number (n) words of each other, regardless of the order in which they appear. (e.g. eating N5 disorders for results that contain eating disorders, as well as mental disorders and eating pathology.)
PT limit to publication type

PubMed syntax

The PubMed search will be restricted to records that are not indexed for MEDLINE (i.e. in-process citations and citations from journals (or parts of journals) that are not currently MEDLINE-indexed)

The search will comprise free-text terms only and replicates the free-text sets in the Embase search (converted from the Ovid syntax).

* truncation character (unlimited truncation)
[TI] limit to title field
[TIAB] limit to title and abstract fields
[EDAT] date citation added to PubMed
[SB] PubMed subset

AND pubmednotmedline[sb] will be added to the last line of search string
Appendix B – Screening criteria

Prior screening criteria are listed below.

At abstract/title screening items 1 through 8 will be considered and applied.

After full text review all items will be considered and applied as appropriate (these studies will be listed in the technical report with reasons for exclusion):

1. duplicate citation
2. nonhuman study
3. intervention or comparator out of scope
 a. intervention out of scope (not Pilates or component thereof)
 b. comparator out of scope (compares different styles, forms or components of Pilates)
4. population out of scope (healthy participants seeking general wellness)
5. outcome out of scope (patient experiences/preferences, safety, quality and economic outcomes)
6. publication type out of scope
 a. opinion piece/editorial/commentary
 b. not an intervention study examining effectiveness
 c. grey literature
7. study design out of scope (specify)
 a. narrative review, Guideline, HTA assessment
 b. SR of RCTs or NRSIs
 c. case series or other
8. duplicate citation submitted to the Department (RCT / NRSI already identified in this SR)
9. publication not available in English
10. other (specify):
 a. duplicate data (multiple reports arising from the same study)
 b. superseded (Study has been updated or more recent data from the primary study is available)
 c. withdrawn
 d. erratum
11. Relevant but additional follow-up needed (specify)
 a. conference proceeding (data incomplete)
 b. ongoing study (results not available)
 c. no outcome of interest reported

a. Screening of articles not published in English will be conducted as described in the Section 3.3.1 ‘Studies published in languages other than English’.

b. Articles tagged as relevant but additional follow-up needed are included but will not be incorporated in the evidence appraisal. These studies may be listed as ‘Studies Awaiting Classification’, ‘ongoing’, or may be considered when developing conclusions about the ‘Overall completeness and applicability of evidence’.
Appendix C – Risk of bias forms

Cochrane RoB v2.0 (randomised controlled trials)

<table>
<thead>
<tr>
<th>Study ID</th>
<th>Judgement</th>
<th>Description a</th>
</tr>
</thead>
<tbody>
<tr>
<td>Domain</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bias arising from the randomisation process</td>
<td>High risk</td>
<td>Describe the method used to determine if:</td>
</tr>
<tr>
<td></td>
<td>Some concerns</td>
<td>• the allocation sequence was random;</td>
</tr>
<tr>
<td></td>
<td>Low risk</td>
<td>• the allocation sequence was adequately concealed;</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• baseline differences between intervention groups suggest a problem with the randomisation process.</td>
</tr>
<tr>
<td>Bias due to deviations from intended interventions</td>
<td>High risk</td>
<td>Describe the method used to conceal treatment allocation:</td>
</tr>
<tr>
<td></td>
<td>Some concerns</td>
<td>• were participants aware of their assigned intervention during the trial?</td>
</tr>
<tr>
<td></td>
<td>Low risk</td>
<td>• were carers and people delivering the interventions were aware of participants’ assigned intervention during the trial?</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• consider the potential effect of deviations due to assignment and deviations due to adherence.</td>
</tr>
<tr>
<td>Bias due to missing outcome data</td>
<td>High risk</td>
<td>Describe the completeness of outcome data for each primary/secondary outcome, including whether:</td>
</tr>
<tr>
<td></td>
<td>Some concerns</td>
<td>• data for this outcome were available for all, or nearly all, participants randomised;</td>
</tr>
<tr>
<td></td>
<td>Low risk</td>
<td>• (if applicable) there was evidence that the result was not biased by missing outcome data;</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• (if applicable) missingness in the outcome was likely to depend on its true value (e.g. the proportions of missing outcome data, or reasons for missing outcome data, differ between intervention groups).</td>
</tr>
<tr>
<td>Bias in measurement of the outcome</td>
<td>High risk</td>
<td>Describe whether:</td>
</tr>
<tr>
<td></td>
<td>Some concerns</td>
<td>• the method of measuring the outcome was inappropriate;</td>
</tr>
<tr>
<td></td>
<td>Low risk</td>
<td>• measurement or ascertainment of the outcome could have differed between intervention groups;</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• outcome assessors were aware of the intervention received by study participants;</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• (if applicable) assessment of the outcome was likely to have been influenced by knowledge of intervention received.</td>
</tr>
<tr>
<td>Bias in selection of the reported result</td>
<td>High risk</td>
<td>Describe whether:</td>
</tr>
<tr>
<td></td>
<td>Some concerns</td>
<td>• the trial was analysed in accordance with a prespecified plan that was finalised before unblinded outcome data were available for analysis;</td>
</tr>
<tr>
<td></td>
<td>Low risk</td>
<td>• the numerical result being assessed is likely to have been selected, on the basis of the results, from multiple outcome measurements within the outcome domain;</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• the numerical result being assessed is likely to have been selected, on the basis of the results, from multiple analyses of the data.</td>
</tr>
</tbody>
</table>

Overall risk of bias

Source: Chapter 8 Cochrane Handbook for Systematic Reviews of Interventions (36).

Notes:

a. For the precise wording of signalling questions and guidance for answering each one, see the full risk of bias tool at www.riskofbias.info.
ROBINS-I (nonrandomised studies of interventions)

<table>
<thead>
<tr>
<th>Study ID</th>
<th>Domain</th>
<th>Judgement</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Bias due to confounding</td>
<td>Low risk</td>
<td>Describe whether:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Moderate risk</td>
<td>• there is potential for confounding of the effect of intervention in this study</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Serious risk</td>
<td>• the analysis is based on splitting participants’ follow-up time according to intervention received</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Critical risk</td>
<td>• intervention discontinuations or switches were likely to be related to factors that are prognostic for the outcome</td>
</tr>
<tr>
<td></td>
<td></td>
<td>No information</td>
<td>• the authors use an appropriate analysis method that controlled for all the important confounding domains</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Low risk</td>
<td>• the variables adjusted for are valid and reliable measures of the confounding domains</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Moderate risk</td>
<td>• the authors control for any post-intervention variables that could have been affected by the intervention</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Serious risk</td>
<td>• the authors use an appropriate analysis method that adjusted for all the important confounding domains and for time-varying confounding</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Critical risk</td>
<td>• confounding domains that were adjusted for measured validly and reliably by the variables available in this study</td>
</tr>
<tr>
<td></td>
<td></td>
<td>No information</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bias in selection of participants into the study</td>
<td>Low risk</td>
<td>Describe whether:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Moderate risk</td>
<td>• the selection of participants into the study (or into the analysis) based on participant characteristics observed after the start of intervention</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Serious risk</td>
<td>• the start of follow-up and start of intervention coincide for most participants</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Critical risk</td>
<td>• adjustment techniques used are likely to correct for the presence of selection biases</td>
</tr>
<tr>
<td></td>
<td></td>
<td>No information</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bias in classification of interventions</td>
<td>Low risk</td>
<td>Describe whether:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Moderate risk</td>
<td>• the intervention groups are clearly defined</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Serious risk</td>
<td>• the information used to define intervention groups is recorded at the start of the intervention</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Critical risk</td>
<td>• classification of the intervention status has been affected by knowledge of the outcome or risk of the outcome</td>
</tr>
<tr>
<td></td>
<td></td>
<td>No information</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bias due to deviations from intended interventions</td>
<td>Low risk</td>
<td>Describe whether:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Moderate risk</td>
<td>• deviations from the intended intervention is beyond what would be expected in usual practice</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Serious risk</td>
<td>• deviations from intended intervention is unbalanced between groups and likely to have affected the outcome</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Critical risk</td>
<td>• important co-interventions balanced are across intervention groups</td>
</tr>
<tr>
<td></td>
<td></td>
<td>No information</td>
<td>• intervention is implemented successfully for most participants</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Low risk</td>
<td>• study participants adhere to the assigned intervention regimen</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Moderate risk</td>
<td>• an appropriate analysis used to estimate the effect of starting and adhering to the intervention</td>
</tr>
<tr>
<td></td>
<td>Bias due to missing data</td>
<td>Low risk</td>
<td>Describe whether:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Moderate risk</td>
<td>• outcome data is available for all, or nearly all, participants</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Serious risk</td>
<td>• participants are excluded due to missing data on intervention status</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Critical risk</td>
<td>• the proportion of participants and reasons for missing data are similar across interventions</td>
</tr>
<tr>
<td></td>
<td></td>
<td>No information</td>
<td>• results were robust to the presence of missing data;</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Low risk</td>
<td>• the predicted direction of bias is due is due to missing data</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Moderate risk</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bias in measurement of outcomes</td>
<td>Low risk</td>
<td>Describe whether:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Moderate risk</td>
<td></td>
</tr>
</tbody>
</table>
Bias in selection of the reported result

<table>
<thead>
<tr>
<th>Domain</th>
<th>Judgement</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Serious risk</td>
<td>• the outcome measure has been influenced by knowledge of the intervention</td>
</tr>
<tr>
<td></td>
<td>Critical risk</td>
<td>• received</td>
</tr>
<tr>
<td></td>
<td>No information</td>
<td>• outcome assessors are aware of the intervention received by study</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• participants</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• the methods of outcome assessment are comparable across intervention</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• groups</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• any systematic errors in measurement of the outcome related to</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• intervention received</td>
</tr>
</tbody>
</table>

Overall risk of bias

| Source: Adapted from Sterne 2019 (35) |
| Notes: |
| a. For the precise wording of signalling questions and guidance for answering each one, see the full risk of bias tool at www.riskofbias.info. |
Appendix D – Data extraction forms

Characteristics of included studies

<table>
<thead>
<tr>
<th>Study ID</th>
<th>Author date</th>
</tr>
</thead>
<tbody>
<tr>
<td>RCT/NRSI</td>
<td>Features:</td>
</tr>
<tr>
<td>Source of funding and conflicts of interest not declared</td>
<td></td>
</tr>
<tr>
<td>Setting: Single centre, multicentre, country/s</td>
<td>e.g. Three hospitals, Tuscany region, Italy, Nursing home, Single provider of intervention</td>
</tr>
<tr>
<td>Enrolment period</td>
<td>Aug 2014 to Mar 2016</td>
</tr>
<tr>
<td>Length of follow-up (months)</td>
<td>12 months</td>
</tr>
<tr>
<td>Description of population (# participants, age, comorbidities etc.)</td>
<td>Elderly patients with osteoporosis at-risk of falls</td>
</tr>
<tr>
<td>Description of intervention/comparator (reported as per TIDIER checklist)</td>
<td>(# of participants, # treatment session, session duration, program duration, co-interventions)</td>
</tr>
<tr>
<td>Intervention</td>
<td>n=</td>
</tr>
<tr>
<td>Comparator #1 (control)</td>
<td>n=</td>
</tr>
<tr>
<td>Comparator #2 (other)</td>
<td>n=</td>
</tr>
<tr>
<td>Is instructor certified? (select from list)</td>
<td>Yes, No, Not specified</td>
</tr>
<tr>
<td>Is comparator clearly inactive? (select from list)</td>
<td>Yes, No, Uncertain (seek advice)</td>
</tr>
<tr>
<td>Outcomes</td>
<td>(list, description, measurement tool, timing)</td>
</tr>
<tr>
<td>Primary #1</td>
<td>Pain, Numerical pain rating scale, 0-100, higher score means worse pain, Short term</td>
</tr>
<tr>
<td>Secondary #1</td>
<td></td>
</tr>
<tr>
<td>Secondary #2</td>
<td></td>
</tr>
<tr>
<td>Secondary #3</td>
<td></td>
</tr>
<tr>
<td>Method of analysis</td>
<td>Descriptive, student t-test, regression</td>
</tr>
<tr>
<td>Population analysed</td>
<td>ITT, PP, Other</td>
</tr>
<tr>
<td>Missing data</td>
<td>e.g. imputations, loss to follow-up</td>
</tr>
</tbody>
</table>
Appendixes

HTANALYSTS | NHMRC | EVIDENCE EVALUATION ON THE CLINICAL EFFECTIVENESS OF PILATES

<table>
<thead>
<tr>
<th>Study ID</th>
<th>Author date</th>
</tr>
</thead>
</table>

INTERNAL VALIDITY

<table>
<thead>
<tr>
<th>Overall risk of bias (select from list)</th>
<th>Some concerns for one or more domains, but no high risk of bias</th>
</tr>
</thead>
<tbody>
<tr>
<td>Summary (descriptive)</td>
<td>Outline outcome specific bias</td>
</tr>
</tbody>
</table>

EXTERNAL VALIDITY

<table>
<thead>
<tr>
<th>Generalisability (relevance of the study population to Australian population)</th>
<th>The evidence is directly generalisable to the Australian population</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>e.g. The study was conducted in elderly patients, mean age is comparable to that in the Australian population</td>
</tr>
<tr>
<td>Applicability (relevance of the evidence to the Australian health care system)</td>
<td>The evidence is directly applicable to the Australian health care context with few caveats</td>
</tr>
<tr>
<td></td>
<td>e.g. The study was conducted in Italy and is likely to be relevant to the Australian health care context with the exception that ...? This is not expected to influence the outcomes of the study</td>
</tr>
</tbody>
</table>

Eligibility for this review

<table>
<thead>
<tr>
<th>Criterion</th>
<th>(select from dropdown)</th>
<th>Population meets eligibility criteria</th>
<th>Uncertain</th>
<th>Seek guidance from NTWC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Service or service component as practiced in Australia</td>
<td>Uncertain</td>
<td>Seek guidance from NTWC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>At least one relevant outcome measure</td>
<td>Uncertain</td>
<td>Seek guidance from NTWC</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Abbreviations: ITT, intent-to-treat; PP, per protocol

Notes:
a. TIDIER is available at http://www.tidierguide.org/

Characteristics of ‘Studies Awaiting Classification’

<table>
<thead>
<tr>
<th>Study ID</th>
<th>Author date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Study description</td>
<td>Title or other descriptive text</td>
</tr>
<tr>
<td>Study design</td>
<td>RCT/NRSI</td>
</tr>
<tr>
<td>Participants</td>
<td></td>
</tr>
<tr>
<td>Intervention</td>
<td></td>
</tr>
<tr>
<td>Comparator</td>
<td></td>
</tr>
<tr>
<td>Outcomes</td>
<td></td>
</tr>
<tr>
<td>Notes</td>
<td>e.g. Article written in Korean with no English abstract - awaiting translation</td>
</tr>
</tbody>
</table>
Outcome data (as reported by the study authors)

<table>
<thead>
<tr>
<th>Study ID RoB</th>
<th>Population</th>
<th>Comparison</th>
<th>Outcome</th>
<th>Timing</th>
<th>Measured with</th>
<th>Measure details</th>
<th>No. participants (N)</th>
<th>[intervention] n/N (%) or mean (SD)</th>
<th>[comparator] n/N (%) or mean (SD)</th>
<th>Point estimate (95% CI)</th>
<th>p-value</th>
<th>Direction of effect</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>[outcome #1]</td>
<td>3 months after randomisation</td>
<td>VAS scale 1-100</td>
<td>e.g. higher score means more pain</td>
<td>RR 1.00 [0.68, 1.48]</td>
<td>X</td>
<td>No difference</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>[outcome #2]</td>
<td></td>
<td></td>
<td></td>
<td>NR</td>
<td>Favours intervention</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>[outcome #3]</td>
<td></td>
<td></td>
<td></td>
<td>NR</td>
<td>Not reported</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>[outcome #4]</td>
<td></td>
<td></td>
<td></td>
<td>NR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>[outcome #5]</td>
<td></td>
<td></td>
<td></td>
<td>NR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>[outcome #6]</td>
<td></td>
<td></td>
<td></td>
<td>NR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>[outcome #7]</td>
<td></td>
<td></td>
<td></td>
<td>NR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Abbreviations: CI, confidence interval; hrs, hours; NR, not reported; OR, odds ratio; RoB, risk of bias; RR, relative risk; yr, year.

Notes: