Non-penetrating glaucoma surgery using AquaFlow(TM) collagen implants

Demeter S, Hailey D

Record Status
This is a bibliographic record of a published health technology assessment from a member of INAHTA. No evaluation of the quality of this assessment has been made for the HTA database.

Citation

Authors' objectives
To summarise the available evidence on the use of AquaFlow(TM) collagen implants in non-penetrating glaucoma surgery.

Authors' conclusions
- AquaFlow(TM) is an absorbable collagen implant for use in non-penetrating surgery for primary open angle glaucoma. Its purpose is to facilitate drainage of fluid from the eye, thereby reducing intraocular pressure.

- AquaFlow(TM) is approved for use in Canada in medically refractory cases of primary open angle glaucoma.

- Non-penetrating glaucoma surgery with the AquaFlow(TM) implant appears to be a relatively safe procedure. However, there is a steep learning curve for the surgeon and it is initially associated with a high rate of conversion to conventional surgery during the operation.

- Limited evidence from small non-randomized trials suggests that the AquaFlow(TM) implant may offer benefits over conventional surgical approaches in terms of reduced complication rates, reduced medication use, an earlier return of improved vision and sustained control of intraocular pressure. However, the efficacy and cost-effectiveness of this approach have not been established.

Project page URL
https://www.ccohta.ca/research/index.html

Indexing Status
Subject indexing assigned by CRD

MeSH
Costs and Cost Analysis; Glaucoma /surgery; Glaucoma Drainage Implants

Language Published
English, French

Country of organisation
Canada

Address for correspondence
600-865 Carling Avenue, Ottawa, ON K1S 5S8 Canada. Tel: +1 613 226 2553, Fax: +1 613 226 5392; Email: jills@ccohta.ca.

AccessionNumber
Health Technology Assessment (HTA) database
Copyright © 2020 Canadian Coordinating Office for Health Technology Assessment
32001000978

Date bibliographic record published
22/11/2001

Date abstract record published
22/11/2001